
Page 1 of 10
(page number not for citation purposes)

Available online http://ccforum.com/content/11/4/218

Abstract
Premature circuit clotting is a major problem in daily practice of
continuous renal replacement therapy (CRRT), increasing blood loss,
workload, and costs. Early clotting is related to bioincompatibility,
critical illness, vascular access, CRRT circuit, and modality. This
review discusses non-anticoagulant and anticoagulant measures to
prevent circuit failure. These measures include optimization of the
catheter (inner diameter, pattern of flow, and position), the settings of
CRRT (partial predilution and individualized control of filtration
fraction), and the training of nurses. In addition, anticoagulation is
generally required. Systemic anticoagulation interferes with
plasmatic coagulation, platelet activation, or both and should be kept
at a low dose to mitigate bleeding complications. Regional anti-
coagulation with citrate emerges as the most promising method.

Introduction
During continuous renal replacement therapy (CRRT), blood is
conducted through an extracorporeal circuit, activating
coagulation by a complex interplay of patient and circuit.
Critically ill patients may develop a procoagulant state due to
early sepsis, hyperviscosity syndromes, or antiphospholipid
antibodies. In early sepsis, activation of the coagulation system
is triggered by proinflammatory cytokines that enhance the
expression of tissue factor on activated mononuclear and
endothelial cells and simultaneously downregulate natural
anticoagulants, thus initiating thrombin generation, subsequent
activation of platelets, and inhibition of fibrinolysis [1].

Initiation of clotting in the extracorporeal circuit traditionally
has been attributed to contact activation of the intrinsic
coagulation system (Figure 1). However, the bioincompatibility
reaction is more complex and is incompletely understood.
Activation of tissue factor, leucocytes, and platelets play an
additional role [2]. However, thrombin activation has been

observed even without detectable systemic activation of
these systems [3,4]. Some of these processes may occur
locally at the membrane. Other reasons for premature clotting
related to the CRRT technique are repeated stasis of blood
flow [5], hemoconcentration, turbulent blood flow, and blood-
air contact in air-detection chambers [6]. Circuit clotting has
further been observed in association with a high platelet
count and platelet transfusion [7,8]. Premature clotting
reduces circuit life and efficacy of treatment and increases
blood loss, workload, and costs of treatment. Therefore,
improving circuit life is clinically relevant.

The interpretation of studies evaluating circuit life in CRRT,
however, is hampered by the complexity and interplay of the
factors mentioned. Furthermore, circuits are disconnected
because of imminent clotting, protein adsorption to the
membrane causing high transmembrane pressures (clogging),
or logistic reasons such as transport or surgery. In addition,
some units change filters routinely after 24 to 72 hours.
Despite a lack of proof supported by large randomized trials,
several measures seem sensible for prolonging patency of
the CRRT circuit.

One major intervention to influence circuit life is anti-
coagulation. Given a recent review on anticoagulation
strategies in CRRT [9], this overview also incorporates the
role of non-anticoagulant measures for circuit survival.

Non-anticoagulant measures to improve
circuit life
1. Reducing stasis of flow
Vascular access
Vascular access is a major determinant of circuit survival. Both
high arterial and venous pressures are detrimental. Access

Review
Clinical review: Patency of the circuit in continuous renal
replacement therapy
Michael Joannidis1 and Heleen M Oudemans-van Straaten2

1Medical Intensive Care Unit, Division of General Internal Medicine, Department of Internal Medicine, Medical University Innsbruck, Anichstr. 35, 
6020 Innsbruck, Austria
2Department of Intensive Care Medicine, Onze Lieve Vrouwe Gasthuis, Oosterpark 9, 1091 AC Amsterdam, The Netherlands

Corresponding author: Heleen M Oudemans-van Straaten, h.m.oudemans-vanstraaten@olvg.nl

Published: 12 July 2007 Critical Care 2007, 11:218 (doi:10.1186/cc5937)
This article is online at http://ccforum.com/content/11/4/218
© 2007 BioMed Central Ltd

aPTT = activated partial thromboplastin time; AT = antithrombin; CRRT = continuous renal replacement therapy; CVVH = continuous venovenous
hemofiltration; CVVHD = continuous venovenous hemodialysis; CVVHDF = continuous venovenous hemodiafiltration; HIT = heparin-induced
thrombocytopenia; Ht = hematocrit; iCa = ionized calcium; LMWH = low molecular weight heparin; PF-4 = platelet factor-4; PG = prostaglandin;
QB = blood flow; QF = ultrafiltrate flow; rhAPC = recombinant human activated protein C; UFH = unfractioned heparin.



Page 2 of 10
(page number not for citation purposes)

Critical Care    Vol 11 No 4 Joannidis and Oudemans-van Straaten

failure causes blood flow reductions, which are associated
with early circuit clotting [5]. In vitro studies have found that
high venous pressures in the circuit reduce circuit life [10].
Randomized studies in critically ill patients on CRRT which
evaluate the effect of catheter site or design on circuit flow
and survival are not available. Most information comes from
observational and in vitro studies in chronic hemodialysis
patients, who need their catheters intermittently and for a
much longer time (reviewed in [11]). Some general principles
are summarized in Figure 2 and are discussed below.

According to Poisseuille’s law, flow through a catheter is
related to the fourth power of radius and inversely related to
length, indicating that a thick (13 to 14 French) and short
catheter is preferable. However, a more central position of the
tip improves flow, dictating sufficient length. In chronic
dialysis patients, best flows are obtained with the tip in the
right atrium [12,13]. With the femoral route, tip position
should be positioned in the inferior caval vein. Because the
inner diameter counts, the material is crucial. In general,
silicone catheters have thicker walls than polyurethane
catheters. Another issue is the presence of side or end holes.
Flow through end holes is laminar, which is optimal, whereas
flow through side holes is turbulent and even locally stagnant,
contributing to early clotting. Suctioning of side holes against
the vessel wall may impair flow, which is minimized with side
holes over the (near) total circumference and absent with end
holes. Another important determinant of catheter flow is the
patient’s circulation. For example, catheter dysfunction was
found to be associated with low central venous pressure [12].

Furthermore, kinking of the catheter may impair catheter flow.
Subclavian access has an enhanced risk of kinking and of

stenosis with longer catheter stay [14-16]. The right jugular
route is the straightest route. Furthermore, high abdominal
pressures or high or very negative thoracic pressures,
occupancy by other catheters, patency or accessibility of veins,
anatomy, posture, and mobility of the patient determine choice
of the site. Ultrasound-guided catheter placement significantly
reduces complications [17]. An important issue is locking of the
CRRT catheter when not in use by controlled saline infusion or
by blocking with heparin or citrate solutions to prevent fibrin
adhesion, which slowly reduces lumen diameter [18,19].

Training of nurses
Slow reaction to pump alarms contributes to stasis of flow
and early filter clotting. Training includes the recognition and
early correction of a kinked catheter and the adequate rinsing
of the filter before use since blood-air contact activates
coagulation [20,21]. Intermittent saline flushes have no
proven efficacy [22]. Filling of the air detection chamber to at
least two thirds minimizes blood-air contact.

2. Optimizing continuous renal replacement therapy
settings
Filtration versus dialysis
For several reasons, continuous venovenous hemofiltration
(CVVH) appears to be associated with shorter circuit life than
continuous venovenous hemodialysis (CVVHD) [23]. First, for
the same CRRT dose, hemofiltration requires higher blood
flows. Higher blood flows give more flow limitation and more
frequent stasis of blood flow. Second, hemofiltration is
associated with hemoconcentration, occurring as a conse-
quence of ultrafiltration. Within the filter, hematocrit (Ht),
platelet count, and coagulation factors increase the likelihood
of coagulation. Continuous venovenous hemodiafiltration

Figure 1

Mechanism of contact activation by hemofilter membranes. ADP, adenosine diphosphate; C, complement factor; GP, glycoprotein; HMWK, high
molecular weight kininogens; PAF, platelet activating factor released by polymorphonuclear cells; plt., platelets; RBC, red blood cells; TF, tissue
factor expressed by adhering monocytes; TXA, thromboxane A2.
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(CVVHDF) combines the possible advantages of hemofiltra-
tion (higher middle molecular clearance) with less hemo-
concentration. Higher solute clearances can be attained at
relatively lower blood flows and may thus increase circuit
survival. However, a prospective survey in children on 442
CRRT circuits (heparin and citrate) could not find a

correlation between circuit survival and CRRT mode (CVVH,
CVVHD, or CVVHDF) [24].

Filtration fraction or postfilter hematocrit
To minimize the procoagulant effects of hemoconcentration, it
is recommended to keep the filtration fraction (the ratio of
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Figure 2

Features of vascular access contributing to extracorporeal blood flow. ICV, inferior caval vein; P, pressure; Q, blood flow; RA, right atrium.
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ultrafiltrate flow [QF] to blood flow [QB]) as low as possible;
a value below 25% is generally recommended in postdilution
mode. It may be more rational to adjust the filtration fraction
to the patient’s Ht because blood viscosity in the filter is the
limiting factor. Although many factors contribute to blood
viscosity, Ht is the main determinant and is available at
bedside. A Ht in the filter (Htfilter) of 0.40 may be acceptable.
Htfilter and the minimal QB required for the prescribed QF can
be calculated at bedside.

Htfilter = QB × Htpatient/(QB – QF),

QB = QF × (Htfilter/(Htfilter – Htpatient).

Another option for reducing the filtration fraction is to
administer (part of) the replacement fluid before the filter.

Predilution versus postdilution
In predilution CRRT, substitution fluids are administered
before the filter, thus diluting the blood in the filter,
decreasing hemoconcentration, and improving rheological
conditions. One small randomized cross-over study (n = 15)
and one study comparing 33 patients on predilution CVVH to
15 historical postdilution controls found longer circuit survival
with predilution [25,26] at the cost of a diminished clearance
[26]. However, compared to the historical controls, mean
daily serum creatinine changes were not significantly different
[25]. Reduced filter downtime may compensate for the lower
predilution clearance. Predilution particularly reduces middle
molecular clearance [27], the clinical consequences of which
are still unclear.

Clogging
Clogging is due to the deposition of proteins and red cells on
the membrane and leads to decreased membrane permea-
bility. Clogging is detected by declining sieving coefficients of
larger molecules and increasing transmembrane pressures.
Clogging enhances the blockage of hollow fibers as well. The
process is still incompletely understood, but interplay
between the protein constitution of plasma, rheological
characteristics of blood, capillary and transmembrane flow,
membrane characteristics, and possibly the use of different
resuscitation fluids influence this process [10,27]. It has been
suggested that with predilution, membrane performance is
better maintained by reducing protein adsorption. On the
other hand, others have shown more protein adsorption with
predilution [28]. This may be explained by the higher
ultrafiltration rate, opening more channels and thus increasing
the actual surface and the amount of protein adsorbed.
Future developments to reduce protein adsorption include
hydrophilic modification of polyetersulfone [29].

Membranes
Biocompatibility is significantly influenced by membrane
characteristics. Main determinants are electronegativity of
membrane surface and its ability to bind plasma proteins, as

well as complement activation, adhesion of platelets, and
sludging of erythrocytes [30] (Figure 1). Few studies have
evaluated the influence of membrane material on filter run
times. Membranes with high absorptive capacity generally
have a higher tendency to clot. In a non-randomized
controlled study, polyamide exhibited later clotting than
acrylonitrile (AN69) [31]. Modification of existing membranes
to increase heparin binding (AN69ST) reduced clotting in
intermittent hemodialysis [32]. Newer membranes with
various polyethersulfone coatings that reduce activation of
coagulation are being developed [33]. Up to now, large
randomized controlled trials evaluating the influence of the
type of membrane on circuit life during CRRT have been
missing.

Filter size
Filter size may play a role and larger surfaces may be of
relevance for filter survival and solute clearance when
CVVHD is applied. A comparison of two polysulphone
hemofilters with different hollow fiber lengths showed
transmembrane pressure and increased survival time being
lower with the longer filter [34].

Anticoagulation
Anticoagulation of the extracorporeal circuit is generally
required. However, systemic anticoagulation may cause
bleeding [31]. The risk of bleeding in critically ill patients is
high because of frequent disruption of the vascular wall and
coagulopathy. Therefore, clinicians search for alternatives
such as CRRT without anticoagulation [35-38], increasing
natural anticoagulants, minimal systemic anticoagulation, or
regional anticoagulation.

1. Increasing natural anticoagulants
Heparin acts by a 1,000-fold potentiation of antithrombin (AT)
to inhibit factors Xa and IIa (thrombin). Low levels of AT
decrease heparin activity and are associated with premature
clotting of the circuit [3,39,40]. In a non-randomized study in
patients on CRRT, AT deficiency (less than 60%) was
associated with early filter clotting, whereas supplementation
increased circuit life [41]. In a recent retrospective case
control study in patients with septic shock undergoing CRRT
with heparin, supplementation of AT to keep plasma concen-
tration above 70% increased circuit survival time [42].

Recombinant human activated protein C (rhAPC), used in
severe sepsis, inhibits the formation of thrombin by degrading
coagulation factors Va and VIIIa. Furthermore, it might decrease
the synthesis and expression of tissue factor and enhance
fibrinolysis [43]. During administration of rhAPC, additional
anticoagulation for CRRT is probably not required [44].

2. Minimal systemic anticoagulation
Systemic anticoagulation inhibits plasmatic coagulation,
platelet function, or both. Low-dose anticoagulation is usually
sufficient to keep the filter patent and mitigates the increased
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risk of bleeding associated with full anticoagulation. Effects in
the circuit are highest with local administration.

Interference with plasmatic coagulation
Unfractioned heparin
Unfractioned heparin (UFH) is the predominant anticoagulant.
Its major advantages are the low costs, ease of admini-
stration, simple monitoring, and reversibility with protamine
[9,45]. The half-life of UFH is approximately 90 minutes,
increasing to up to 3 hours in renal insufficiency due to
accumulation of the smaller fragments. Monitoring with
activated partial thromboplastin time (aPTT) is still the best
option. Retrospective analyses indicate increased bleeding if
systemic aPTT is longer than 45 seconds [31]. At this low
level of anticoagulation, activated clotting time is relatively
insensitive for monitoring [46]. However, aPTT appears to be
an unreliable predictor of bleeding [9,47]. Given these
limitations, a possible scheme for UFH consists of a bolus of
30 IU/kg followed by an initial rate of 5 to 10 IU/kg per hour in
patients with normal coagulation. However, the level of
anticoagulation should be individualized. Apart from bleeding,
major side effects of UFH include development of heparin-
induced thrombocytopenia (HIT), hypoaldosteronism, effects
on serum lipids, and AT dependency [47].

Low molecular weight heparins
Low molecular weight heparins (LMWHs) exhibit several
advantages, including lower incidence of HIT [48], lower AT
affinity, less platelet and polymorphonuclear cell activation,
less inactivation by platelet factor-4 (PF-4), higher and more
constant bioavailability, and lack of metabolic side effects
[47,49,50]. However, data on the use of LMWH in CRRT are
limited [7,51-53]. Dalteparin, nadroparin, and enoxaparin
have been investigated. Their mean molecular weight is
between 4.5 and 6 kDa, and their mean half-life ranges from
2.5 to 6 hours and is probably even longer in renal insufficiency.
However, there are indications that LMWHs are eliminated by
CRRT [54]. Although some studies use LMWH in a fixed
dose [7,52], continuous intravenous application of LMWH,
aiming at systemic anti-FX levels of 0.25 to 0.35 U/ml, may be
the safest option [53]. However, anti-Xa may not be a reliable
predictor of bleeding [55] and anti-Xa determinations are not
generally available.

Heparin-induced thrombocytopenia
HIT is caused by a heparin-induced antibody that binds to the
heparin-PF-4 complex on the platelet surface. This may or
may not lead to platelet activation and consumption,
thrombocytopenia, and both arterial and venous thrombosis.
Depending on the dose and type of heparin, the population,
and the criteria used, 1% to 5% of treated patients develop
HIT [56]. Platelet count typically rapidly decreases by more
than 50% after approximately 1 week or earlier after previous
use of heparin. Diagnosis depends on a combination of
clinical and laboratory results [57]. A reliable diagnosis is
complicated by the fact that the incidence of a false-positive

enzyme-linked immunosorbent assay test is high [58].
Unfortunately, the more precise carbon 14-serotonin release
assay is not routinely available. Awaiting final diagnosis, all
kinds of heparins should be discontinued and an alternative
anticoagulant started.

There are no randomized controlled trials showing which
anticoagulant is best for HIT. The choice depends on local
availability and monitoring experience. If citrate is used for
anticoagulation of the circuit, separate thromboprophylaxis
must be applied. Inhibition of thrombin generation can be
obtained via direct inhibition of FIIa (r-hirudin, argatroban, or
dermatan sulphate), FXa (danaparoid or fondaparinux), or both
(nafamostat). Inhibition of platelet activation can be obtained
by the use of prostaglandins (PGs) (summarized in [9,59]).
The use of r-hirudin is discouraged because of severe adverse
events, extremely long half-life (170 to 360 hours), and the
requirement of ecarin clotting time for monitoring [60]. Given
the long half-life of fondaparinux and danaparoid (more than
24 hours), monitoring of anti-Xa is mandatory. The clinical
relevance of cross-reactivity of danaparoid with HIT antibodies
is not known [61]. Argatroban might be preferred because it is
cleared by the liver and monitoring with aPTT seems feasible
[62-65]. The half-life is approximately 35 minutes in chronic
dialysis, but longer in the critically ill. Up to now, clinical data in
CRRT and availability of the drug have been limited.

Interference with platelet activation
Inhibition of platelet activation by PGs appears to be justified
because the extracorporeal generation of thrombin and the
use of heparin cause platelet activation. Both PGE1 and PGI2
have been investigated in CRRT, alone or in combination with
heparins. The exclusive use of PGs in CVVH (1.5 liters per
hour in predilution) provided a rather short circuit survival
(median, 15 hours) [66]. Nevertheless, PGs may be a safe
initial alternative when HIT is suspected. They can even be
used in patients with hepatic and renal failure [67].
Significant improvement of circuit survival, however, could be
achieved only when PGs were combined with low-dose UFH
or LMWH [68-70]. PGs are administered in doses of 2 to
5 ng/kg per minute. Major drawbacks for routine use are their
high costs and hypotension due to vasodilatation, but the
half-life of the vasodilatory effect is as short as 2 minutes.

Regional anticoagulation with citrate
Anticoagulation
Regional anticoagulation can be achieved by the prefilter
infusion of citrate. Citrate chelates calcium, decreasing
ionized calcium (iCa) in the extracorporeal circuit. For optimal
anticoagulation, citrate flow is adjusted to blood flow,
targeting at a concentration of 3 to 5 mmol/l in the filter [71].
Postfilter iCa can be used for fine tuning of the level of anti-
coagulation, aiming at a concentration of iCa of less than
0.35 mmol/l (Table 1). However, others prefer a fixed citrate
dose and do not monitor iCa in the circuit, thereby simplifying
the procedure (summarized in [9]). Citrate is partially
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removed by convection or diffusion and partially enters the
systemic circulation, where iCa rises again due to the dilution
of extracorporeal blood, the liberation of chelated calcium
when citrate is metabolized, and the replacement of calcium.
As a result, systemic effects on coagulation do not occur.

Buffer
Apart from being an anticoagulant, citrate is a buffer
substrate. The generation of buffer is related to the
conversion of sodium citrate to citric acid:

Na3 citrate + 3H2CO3 →
citric acid (C6H8O7) + 3NaHCO3

Citric acid enters the mitochondria and is metabolized in the
Krebs cycle, mainly in the liver but also in skeletal muscle and
the renal cortex, leaving sodium bicarbonate.

Removal and accumulation of citrate
Citrate removal by CRRT mainly depends on CRRT dose and
not on modality. Citrate clearance approximates urea
clearance. The sieving coefficient is between 0.87 and 1.0
and is not different between CVVH and CVVHD [72,73].
Citrate removal with CRRT also depends on citrate
concentration in the filter and filtration fraction; high fractions
are associated with relatively higher citrate clearance and a
lower buffer supply to the patient.

The use of regional anticoagulation with citrate is limited by
the patient’s capacity to metabolize citrate, which is
decreased if liver function or tissue perfusion fails [74]. Due
to the citrate load associated with transfusion, patients having
received a massive transfusion are also at risk of citrate
accumulation. If citrate accumulates, iCa decreases and
metabolic acidosis ensues, since bicarbonate continues to be
removed by filtration or dialysis, while citrate is not used as a
buffer. In daily clinical practice, citrate measurement is
hampered by the limited stability of the reagents. However,
accumulation of citrate due to decreased metabolism can be
detected accurately by the symptoms of metabolic acidosis,
increasing anion gap, ionized hypocalcemia, and most
specifically by an increased total/iCa concentration. A ratio of
more than 2.1 predicted a citrate concentration of greater

than 1 mmol/l with 89% sensitivity and 100% specificity [71].
Others use a ratio of more than 2.5 for accumulation [75].

Accumulation of citrate can also be the result of an
unintended citrate over-infusion or of decreased removal in
case of a decline in membrane performance at constant
citrate infusion. In these cases, ionized hypocalcemia occurs
together with metabolic alkalosis. Both derangements are
preventable by adherence to the protocol or are detectable
early by strict monitoring.

Metabolic consequences
Anticoagulation with citrate has complex metabolic conse-
quences, which are related to the dual effects of citrate as an
anticoagulant and a buffer. Manipulation of citrate or blood
flow, ultrafiltrate, dialysate, or replacement rates, and their
mutual relation changes the amount of buffer substrate
entering the patient’s circulation. For a constant buffer
delivery, these flows are to be kept constant, while they can
be adjusted to correct metabolic acidosis or alkalosis.
Causes of metabolic derangements and possible adjust-
ments are summarized in Table 2.

Citrate solutions
Citrate is either infused as a separate tri-sodium citrate
solution or added to a calcium-free predilution replacement
fluid. The strength of citrate solutions is generally expressed
as a percentage (grams of tri-sodium citrate per 100 ml).
Some of the solutions contain additional citric acid to reduce
sodium load. Because anticoagulatory strength of the
solution depends on the citrate concentration, it is best
expressed as molar strength of citrate. Citrate solutions for
postdilution CVVH(D) contain 133 to 1,000 mmol citrate per
liter [73,75-82]. Citrate replacement solutions for predilution
CVVH contain 11 to 15 mmol citrate per liter [83-88] and for
predilution CVVHDF, 13 to 23 mmol/l [40,89-92]. The buffer
strength of the solution is related to the conversion of tri-
sodium citrate to citric acid (see formula above) and therefore
to the proportion of sodium as cation.

Modalities
After the first report of Mehta and colleagues [76], a wide
variety of homemade citrate systems for CRRT have been
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Table 1

Different options for adjustment of anticoagulation with citrate

Anticoagulant target Pro Con

Calculated [citrate] in filter 3-5 mmol/l Fixed ratio of citrate flow and blood flow Anticoagulation may not be optimal
No extra monitoring
Fixed buffer supply to patient

[iCa++] postfilter 0.25-0.35 mmol/l Optimal anticoagulation Monitoring of postfilter iCa++

Adjustment of citrate flow gives varying buffer 
supply to patient

iCa++, ionized calcium.



described. There are systems for CVVHD, predilutional or
postdilutional CVVH, CVVHDF, and different doses of CRRT
(1.5 to 4 liters per hour) (summarized in the electronic
supplemental material in [9]). None of the proposed systems
can attain perfect acid-base control using one standard
citrate, replacement, or dialysis solution. Each protocol has its
own rules to correct metabolic acidosis or alkalosis or
hypocalcemia or hypercalcemia.

Circuit survival and bleeding complications
Some of the published studies compare circuit life and
bleeding complications with citrate to historical or contem-
porary non-randomized controls on heparin (summarized in
[9]) [93-95]. Because the citrate patients often had a higher

risk of bleeding, groups are generally not comparable.
Nevertheless, bleeding complications were generally reduced
in the citrate groups. Circuit survival with citrate was usually
improved (summarized in [9]) [93], sometimes comparable
[24,84,95], and in some studies shorter than with heparin
[89,94]. Differences in circuit life between studies can be
explained in part by the wide variety of citrate dose (2 to
6 mmol/l blood flow), fixed citrate infusion or citrate dose
titrated on postfilter iCa, the use of dialysis or filtration
(predilution or postdilution), differences in CRRT dose and
filtration fraction, or by a reduction in citrate flow used for
control of metabolic alkalosis. Only two small randomized
controlled studies comparing anticoagulation with citrate to
UFH have appeared in a full paper. Both show a significantly
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Table 2

Metabolic derangements and adjustments during citrate anticoagulation

Derangement Cause and signs Adjustment

Metabolic acidosis Insufficient removal of metabolic acids Increase continuous renal replacement therapy dose 
Anion gap increases (filtrate or dialysate flow) to 35 ml/kg per hour

Loss of buffer substrate is higher than delivery Increase bicarbonate replacement 
or increase bicarbonate dialysate flow 
or give additional bicarbonate 
or increase citrate flow (cave accumulation)

Citrate metabolism decreases (iCa decreases, Decrease citrate delivery or stop
totCa/iCa increases [more than 2.1-2.5], and anion increase dialysate or filtrate flow
gap increases) increase bicarbonate replacement 

or increase bicarbonate dialysate flow

Metabolic alkalosis Delivery of buffer substrate is higher than loss Decrease bicarbonate replacement 
or decrease bicarbonate dialysate flow 
or stop additional bicarbonate i.v. 
or decrease citrate flow (cave anticoagulation)

Decreased loss of buffer due to a decline in Change filter
filtrate flow Increase filtrate flow

Hypocalcemia Loss of calcium is higher than delivery (iCa decreases Increase i.v. calcium dose
and totCa/iCa is normal)

Citrate metabolism decreases (metabolic acidosis, Increase i.v. calcium dose, 
totCa/iCa increases, and anion gap increases) decrease or stop citrate delivery 

increase dialysate or filtrate flow,
increase bicarbonate replacement 
or increase bicarbonate dialysate flow

Hypercalcemia Delivery of calcium is higher than loss Decrease i.v. calcium dose

Hypernatremia Delivery of sodium is higher than loss Recalculate default settings
Protocol violation
• decrease sodium replacement
• decrease dialysate sodium content
• decrease trisodium citrate flow

Decreased loss of sodium due to a decline in Change filter
filtrate flow

Hyponatremia Loss of sodium is higher than delivery Recalculate default settings
Protocol violation
• increase sodium replacement
• increase dialysate sodium content
• increase trisodium citrate flow

iCa, ionized calcium; i.v., intravenous; totCa/iCa, ratio of total to ionized calcium.



longer circuit survival with citrate [40,82], a trend toward less
bleeding [40], and less transfusion with citrate [82].

Safety of citrate
It may be questioned whether the benefits of citrate (less
bleeding, possibly a longer circuit survival, and less bio-
incompatibility [96-98]) weigh against the greater risk of
metabolic derangement and possible long-term side effects
like increased bone resorption [99]. Preliminary results from a
large randomized controlled trial (of approximately 200
patients) comparing regional anticoagulation with citrate to
nadroparin in postdilution CVVH show that citrate is safe and
superior in terms of mortality to nadroparin (H.M. Oudemans-
van Straaten, to be published).

Conclusion
Premature clotting of the CRRT circuit increases blood loss,
workload, and costs. Circuit patency can be increased. Non-
anticoagulation measures include optimization of vascular
access (inner diameter, pattern of flow, and position), CRRT
settings (partial predilution and individualized control of
filtration fraction), and the training of nurses. Systemic anti-
coagulation interferes with plasmatic coagulation, platelet
activation, or both and should be kept at a low dose to
mitigate bleeding complications. Regional anticoagulation
with citrate emerges as the most promising method.
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